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1 Introduction

Mathematical calculations are absolutely necessary to explore important concepts in
chemistry. In mathematical chemistry, molecules are often modeled by graphs named
“molecular graphs”. A molecular graph is a simple graph in which vertices are the
atoms and edges are bonds between them. By IUPAC terminology, a topological
index is a numerical value for correlation of chemical structure with various physical
properties, chemical reactivity or biological activity.

We introduced have a new pair of invariants, the third Zagreb coindex and the
hyper Zagreb coindex. It is well known that many graphs of general and in particular of
chemical, interests arise from simpler graphs via various graph operations. It is, hence,
important to understand how certain invariants of such composite graphs are related
to the corresponding invariants of their components. Graovać and Pisanski [8] were
the first to consider the problem of computing topological indices of product graphs.
In their paper, they computed an exact formula for the Wiener index of the Cartesian
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product of graphs. The results were generalized by a series of authors who computed
unweighted and vertex-weighted Wiener (or Hosoya) polynomials for various classes
of composite graphs [6,17,19], including the Cartesian product, composition, sum,
disjunction and symmetric difference of two graphs.

Throughout this paper we consider only simple connected graphs, i.e. connected
graphs without loops and multiple edges. The Wiener index is the first and most stud-
ied topological indices, both from theoretical point of view and applications. It is
equal to the sum of distances between all pairs of vertices of the respective graph,
see for details [4,5,22]. We encourage the reader to consult [2,9,16,23–25] for his-
torical background, computational techniques and mathematical properties of Zagreb
indices.

The Cartesian product G × H of graphs G and H has the vertex set V (G × H) =
V (G) × V (H) and (a, x) (b, y) is an edge of G × H if a = b and xy ∈ E (H) , or
ab ∈ E(G) and x = y. TheWiener index of the Cartesian product graphs was studied
in [8,17].

The joinG = G1+G2 of graphsG1 andG2 with disjoint vertex sets V1 and V2 and
edge sets E1 and E2 is the graph union G1 ∪G2 together with all the edges joining
V1 and V2.

The composition G = G1[G2] of graphs G1 and G2 with disjoint vertex sets V1
and V2 and edge sets E1 and E2 is the graph with vertex set V1 × V2 and u = (u1, v1)
is adjacent with v = (u2, v2) whenever (u1 is adjacent with u2) or (u1 = u2 and v1 is
adjacent with v2), see [[11], p.185].

Then, Ashrafi et al. [1] computed the first and second Zagreb coindices of the
Cartesian product, composition, sum, disjunction and symmetric difference of two
graphs. Here we continue this line of research by exploring the behavior of the third
and hyper Zagreb coindices under several important operations. The results are applied
to several classes of molecular graphs such as nanotubes and nanotori. In recent years,
there has been considerable interest in general problems of determining topological
indices [14,15].

2 Definitions and preliminaries

All graphs in this paper are finite and simple. For terms and concepts not defined here
we refer the reader to any of several standard monographs such as, e.g., [3,10,20,21].

Let G be a finite simple graph on n vertices and m edges. We denote the vertex and
the edge set of G by V (G) and E (G), respectively. The complement of G, denoted
by Ḡ, is a simple graph on the same set of vertices V (G) in which two vertices u and
v are adjacent, i.e., connected by an edge uv, if and only if they are not adjacent in
G. Hence, uv ∈ E

(
Ḡ

) ⇔ uv /∈ E (G). Obviously, E (G) ∪ E
(
Ḡ

) = E(Kn) and

m̄ = E
(
Ḡ

) =
(
n
2

)
− m. The degree of a vertex u in G is denoted by d(u); the

degree of the same vertex in Ḡ is then given by dḠ (u) = n−1−dG (u). We will omit
the subscript G when the graph is clear from the context. For a (molecular) graph G,
the first Zagreb index M1 (G) is equal to the sum of the squares of the degrees of the
vertices, and the second Zagreb index M2 (G) is equal to the sum of the products of
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the degrees of pairs of adjacent vertices. In fact,

M1 (G) =
∑

u∈V (G)

d(u)2, M2 (G) =
∑

uv∈E(G)

d (u) d(v).

Also, one can rewrite the first Zagreb index as:

M1 (G) =
∑

uv∈E(G)

(d (u) + d(v)) .

The third Zagreb index was first introduced by Fath-Tabar [7]. This index is defined
as follows:

M3 (G) =
∑

uv∈E(G)

|d(u) − d(v)| .

The first and second Zagreb coindices were first introduced by Ashrafi et al. [1]. They
are defined as follows:

M1 (G) =
∑

uv /∈E(G)

(d(u) + d(v)) , M2 (G) =
∑

uv /∈E(G)

d(u)d(v).

The hyper-Zagreb indexwas first introduced by [18]. This index is defined as follows:

HM (G) =
∑

uv∈E(G)

(d (u) + d (v))2 .

3 Main results

All considered operations are binary. Hence, we will usually deal with two finite and
simple graphs, G1 and G2. For a given graph Gi , its vertex and edge sets will be
denoted by Vi and Ei , respectively, and their cardinalities by ni and mi , respectively,
where i = 1, 2. The number of edges in Ḡi is denoted by mi . When more than two
graphs can be combined using a given operation, the values of subscripts will vary
accordingly.We begin with the following crucial related to distance properties of some
graph operations.

Lemma 3.1 Let G and H be two connected graphs. Then we have:

(a)

|V (G × H)| = |V (G [H ])| = |V (G)| |V (H)| ,
|E (G × H)| = |E (G)| |V (H)| + |V (G)| |E (H)| ,
|E (G + H)| = |E (G)| + |E (H)| + |V (G)| |V (H)| ,
|E(G [H ])| = |E(G)| |V (H)|2 + |E(H)| |V (G)| ,

(b) G × H is connected if and only if G and H are connected,
(c) If (a, b) is a vertex of G × H then degG×H ((a, b)) = degG (a) + degH (b) ,
(d) If (a, b) is a vertex of G [H ] then degG[H ] ((a, b)) = |V (H)| degG (a) +

degH (b) ,
(e) If (a, b) is a vertex of G + H then, we have:
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degG+H (a)

{
degG (a) + |V (H)| i f a ∈ V (G)

degH (a) + |V (G)| i f a ∈ V (H) .

Proof The parts (a) and (b) are consequence of definitions and some famous results
of the book of Imrich and Klavzar [11]. For the proof of (c-e) were refer to [12,13].

��

Proposition 3.2 Let G be a simple graph, then M̄3 (G) = M3
(
Ḡ

)
.

Proof

M̄3 (G) =
∑

uv /∈E(G)

|dG (u) − dG (v)| =
∑

uv∈E(Ḡ)
|dG (u) − dG (v)|

=
∑

uv∈E(Ḡ)
|n − 1 − dG (u) − n + 1 + dG (v)|

=
∑

uv∈E(Ḡ)
|(n−1−dG (u))−(n − 1 − dG (v))|

=
∑

uv∈E(Ḡ)

∣∣dḠ (u)−dḠ (v)
∣∣=M3

(
Ḡ

)
.

��

Proposition 3.3 Let G be a simple graph, then M3
(
Ḡ

) = M3 (G) .

Proof

M̄3
(
Ḡ

) =
∑

uv /∈E(Ḡ)

∣∣dḠ (u) − dḠ (v)
∣∣

=
∑

uv∈E(G)

|(n − 1) − dG (u) − (n − 1) + dG (v)|

=
∑

uv∈E(G)

|dG (u) − dG (v)| = M3 (G) .

Its follows directly from the definition that third Zagreb coindex achieve its smallest
possible value of zero on complete, empty and on cycle graphs. ��

Proposition 3.4

M3 (Kn) = M3
(
Kn

) = 0,
M3(Kn) = M3 (Kn) = 0,
M3 (Cn) = M3

(
C̄n

) = 0,
M3(C̄n) = M3 (Cn) = 0.
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Proposition 3.5 Let G be a simple graph with n vertices and m edges. Then
HM(Ḡ) = 4 (n − 1)2 m − 4 (n − 1)M1 (G) + HM (G).

Proof

HM
(
Ḡ

) =
∑

uv∈E(Ḡ)

(
dḠ (u) + dḠ (v)

)2

=
∑

uv∈E(Ḡ)
(n − 1 − dG (u) + n − 1 − dG (v))2

=
∑

uv /∈E(G)

(2 (n − 1) − (dG (u) + dG (v)))2

= 4(n − 1)2
∑

uv /∈E(G)

1 − 4(n − 1)
∑

uv /∈E(G)

(dG (u) + dG (v))

+
∑

uv /∈E(G)

(dG (u) + dG (v))2

= 4 (n − 1)2 m − 4 (n − 1)M1 (G) + HM (G) . ��

Proposition 3.6 Let G be a graph. Then, HM (G) = HM
(
Ḡ

)−4 (n − 1)M1
(
Ḡ

)+
4 (n − 1)2 m.

Proof

HM (G) =
∑

uv /∈E(G)

(dG (u) + dG (v))2

=
∑

uv∈E(Ḡ)
(−dG (u) − dG (v))2

=
∑

uv∈E(Ḡ)
[(n − 1 − dG (u) − (n − 1)) + (n − 1 − dG (v) − (n − 1))]2

=
∑

uv∈E(Ḡ)

[
dḠ (u) + dḠ (v) − 2(n − 1)

]2

=
∑

uv∈E(Ḡ)

(
dḠ (u) + dḠ (v)

)2 − 4(n − 1)
∑

uv∈E(Ḡ)

(
dḠ (u) + dḠ (v)

)

+ 4 (n − 1)2
∑

uv∈E(Ḡ)
1

= HM
(
Ḡ

) − 4 (n − 1)M1
(
Ḡ

) + 4 (n − 1)2 m. ��

Proposition 3.7 LetG beagraph. Then, HM
(
Ḡ

) = 4m(n−1)2−4 (n − 1)M1 (G)+
HM (G).
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Proof

HM
(
Ḡ

) =
∑

uv /∈E(Ḡ)

(
dḠ (u) + dḠ (v)

)2

=
∑

uv∈E(G)

(
2 (n − 1) − (dG (u) + dG (v))2

)

= 4 (n − 1)2
∑

uv∈E(G)

1 −
⎛

⎝4(n − 1)
∑

uv∈E(G)

(dG (u) + dG (v))

⎞

⎠

+
∑

uv∈E(G)

(dG (u) + dG (v))2

= 4m(n − 1)2 − 4 (n − 1)M1 (G) + HM (G) .

The following results for complete, cycle, path, complete bipartite and hyper cube
graph follow easily by direct calculations. ��

Proposition 3.8 (1) HM (Kn) = 0,

(2) HM (Cn) = 8n (n − 3) ,

(3) HM (Pn) = 8n2 − 38n + 46,

(4) HM
(
Km,n

) = 2mn [n (m − 1) + m (n − 1)] ,

(5) HM (Qk) = 21+K K 2
(
2K − K − 1

)
.

Here we consider the union operation of two graphs. A union G1∪G2 of the graphs
G1 and G2 is the graph with the vertex set V1 ∪ V2 and the edge set E1 ∪ E2. Here
we assume that V1 and V2 are disjoint.

Proposition 3.9 Let G1 and G2 be two simple graphs. Then

(1) M3(G1 ∪ G2) ≤ M3 (G1) + M3 (G2) + 2(m1n2 + m2n1),
(2) HM (G1 ∪ G2)=HM (G1) + HM (G2) + n2M2 (G1) + n1M2 (G2) + 8m1

m2.

Proof The degree dG1∪G2(u) of a vertex u is equal to the degree of u in the component
Gi that contains it. The third Zagreb coindex G1 ∪G2 is equal to the sum of the third
Zagreb coindices of the components plus the contributions from the missing edges
between the components. There are n1n2 of missing edges and their contribution is
given by:
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∑

u∈V (G1)

⎡

⎣
∑

v∈V (G2)

|d (u) − d(v)|
⎤

⎦ ≤
∑

u∈V (G1)

⎡

⎣
∑

v∈V (G2)

(|d(u)| + |d(v)|)
⎤

⎦

=
∑

u∈V (G1)

⎡

⎣
∑

v∈V (G2)

(d (u) + d (v))

⎤

⎦

=
∑

u∈V (G1)

[n2d (u) + 2m2] = 2m1n2 + 2m2n1.

This gives us the first claim. The second claim follows by the same reasoning. Since
the contribution of the missing edges between G1 and G2 is given by:

∑

u∈V (G1)

⎡

⎣
∑

v∈V (G2)

(d (u) + d (v))2

⎤

⎦

=
∑

u∈V (G1)

⎡

⎣
∑

v∈V (G2)

d (u)2 +
∑

v∈V (G2)

d (v)2 + 2
∑

v∈V (G2)

d (u) d (v)

⎤

⎦

=
∑

v∈V (G2)

∑

u∈V (G1)

d(u)2 +
∑

u∈V (G1)

∑

v∈V (G2)

d(v)2 + 2
∑

u∈V (G1)

d (u)
∑

v∈V (G2)

d (v)

= n2M2 (G1) + n1M2 (G2) + 8m1m2.

The result of Proposition 3.9 follows by the identity
∑

u∈V (G) d (u) = 2m.

Next is the operation of sum of two graphs. A sum G1 + G2 of two graphs G1 and
G2 is sometimes called a join, and is denoted by G1∇G2. We first consider the case
when one of the components in a sum is single vertex. ��
Proposition 3.10 (1) M3 (G + K1) = M3 (G) ,

(2) HM (G + K1) = HM (G) + 4M1 (G) + 4m.

Proof The degree dG+K1 (u) = dG (u) + 1. Hence, to prove the first claim we have:

M̄3 (G + K1) =
∑

uv /∈E(G)

∣∣dG+K1 (u) − dG+K1(v)
∣∣

=
∑

uv /∈E(G)

|(dG (u) + 1) − (dG (v) + 1)|

=
∑

uv /∈E(G)

|dG(u) − dG (v)| = M̄3 (G) .

For the second claim we have:

HM (G + K1) =
∑

uv /∈E(G)

(
dG+K1 (u) + dG+K1(v)

)2
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=
∑

uv /∈E(G)

(dG (u) + dG (v) + 2)2

=
∑

uv /∈E(G)

(dG (u) + dG (v))2

+ 4
∑

uv /∈E(G)

(dG (u) + dG (v)) + 4
∑

uv /∈E(G)

1

= HM (G) + 4M1 (G) + 4m.

��
Proposition 3.11 Let G1 and G2 be two simple graphs. Then

(1) M3 (G1 + G2) = M3 (G1) + M3 (G2) ,

(2) HM (G1 + G2) = HM (G1) + HM (G2) + 4
(
n2M1 (G1) + n1M1(G2)

) +
4

(
n22m1 + n21m2

)
.

Proof To prove the first claim, notice that dG1+G2 (u) = dG1 (u) + n2 and
dG1+G2 (v) = dG2 (v) + n1 for u ∈ V (G1) , v ∈ V (G2). Since all possible edges
between G1 and G2 are present in G1 + G2, there are no missing edges, and hence
their contributions is zero. The remaining two contribution one from the edges missing
in G1 and the other from the edges missing in G2, are given by

∑

e/∈E(G1)

∣∣(dG1 (u)+n2)−(dG1 (v)+n2
)∣∣=

∑

e/∈E(G1)

∣∣dG1 (u) − dG1 (v)
∣∣ = M3 (G1) ,

and similarly for the sum over the edges missing in G2 we have,

∑

e/∈E(G2)

∣
∣(dG2 (u)+n1)−(dG2 (v)+n1)

∣
∣=

∑

e/∈E(G2)

∣
∣dG2 (u) − dG2 (v)

∣
∣ = M3 (G2) .

First claim now follows by adding two contributions. To prove the second claim we
have the same reasoning.

∑

e/∈E(G1)

[(
dG1 (u) + n2

) + (
dG1 (v) + n2

)]2

=
∑

e/∈E(G1)

(
dG1 (u)+dG1 (v)

)2+ 4n2
∑

e/∈E(G1)

(
dG1 (u)+dG1 (v)

) + 4n22
∑

e/∈E(G1)

1

= HM (G1) + 4n2M1 (G1) + 4n22m1.

Similarly,

∑

e/∈E(G2)

[(
dG2 (u) + n1

) + (
dG2 (v) + n1

)]2
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=
∑

e/∈E(G2)

(
dG2 (u)+dG2 (v)

)2 + 4n1
∑

e/∈E(G2)

(
dG2 (u) + dG2 (v)

)+ 4n21
∑

e/∈E(G2)

1

= HM (G2) + 4n1M1 (G2) + 4n21m2.

Hence,

HM (G1 + G2) = HM (G1) + HM (G2)

+ 4
(
n2M1(G1

) + n1M1(G2)) + 4
(
n22m1 + n21m2

)
.

The sum operation can be extended inductively to more than two graphs in an
obvious way. Let G1, . . . ,Gk be graphs with vertex sets Vi and edge sets Ei of
cardinality ni and mi , respectively. ��

Corollary 3.12 (1) M3

(
K∑

i=1
Gk

)
=

k∑

i=1
M3 (Gk)

(2) HM

(
k∑

i=1
Gk

)
=

k∑

i=1
HM(Gk) + 2k

⎛

⎜
⎜
⎝

k∑

i, j=1
i 	= j

n j M1(Gi )

⎞

⎟
⎟
⎠+ k2

⎛

⎜
⎜
⎝

k∑

i, j=1
i 	= j

n2jmi

⎞

⎟
⎟
⎠.

In both Propositions 3.13 and 3.15 the third and hyper Zagreb coindices of the
Cartesian product and composition of two graphs G1 and G2 are investigated.

Proposition 3.13 (1) M3 (G1 × G2) ≤ 2 (n1m2 + n2m1) (n1n2 − 1) − n1M3 (G2)

− n2M3 (G1) .

(2) HM (G1 × G2) = 2 (n1n2 − 1) (n2M1 (G1) + n1M1 (G2) + 8m1m2) − n1
HM (G2) − n2HM (G1) − 8(m1M1 (G2) + m2M1 (G1) + 2m1m2).

Proof To prove the first formula we have the expression M3 (G1 × G2) =
n2M3 (G1) + n1M3 (G2) from Theorem 8 of [7].

M̄3 (G1 × G2) =
∑

uv /∈E(G1×G1)

∣∣dG1×G2 (u1, u2) − dG1×G2 (v1, v2)
∣∣

≤
∑

uv /∈E(G1×G1)

∣∣dG1 (u1) − dG1 (v1)
∣∣

+
∑

uv /∈E(G1×G1)

∣∣dG2 (u2) − dG2 (v2)
∣∣

≤ 2 (n1m2 + n2m1) (n1n2 − 1) − M3 (G1 × G2) ,

= 2 (n1m2 + n2m1) (n1n2 − 1) − n2M3 (G1) − n1M3 (G2) .

The second formula follows from the expression HM(G1×G2) = n1HM (G2)+
n2HM (G1) + 8m1M1 (G2) + 8m2M1 (G1) + 16m1m2 from Theorem 2 of [18].

As an application of the above results, we give the explicit formula for the hyper
Zagreb coindex and the upper bound formula for the third Zagreb coindex of Pr ×
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Ps, Pr × Cq and Cp × Cq . The formula follow from proportion 3.13 by plugging in
the expressions:

M3 (Pn) = 2,M3 (Cn) = 0, HM (Pn) = 16n − 30 and HM (Cn) = 16n.

��

Corollary 3.14 (1) M̄3 (Pr × Ps) ≤ 2 (2rs − (r + s)) (rs − 1) − 2 (r + s) ,
(2) HM (Pr × Ps) = 4 (rs − 1) (8rs − 7r − 7s + 4) − 2 (16rs − 15r − 15s) −

16 (5rs − 6r − 6s + 7) ,
(3) M3

(
Pr × Cq

) ≤ 2q (2r − 1)(rq − 1) − 2q,
(4) HM

(
Pr × Cq

) = 2q (2(rq − 1)(8r − 7) + 63q − 5r),
(5) M3

(
Cp × Cq

) ≤ 4pq (pq − 1) ,
(6) HM

(
Cp × Cq

) = 2pq (16pq − 67) .

Proposition 3.15 (1) M3 (G1 [G2]) ≤ 2 (n1n2 − 1)
(
m1n22 + n1m2

) − 8m1m2n2 −
n1M1 (G2) − n32M1 (G1) ,

(2) HM (G1 [G2]) = 2 (n1n2 − 1)
(
n32M1(G1) + n1M1(G2

)+8m1m2n2)−n42HM
(G1) − n1HM (G2) − 2m1n2M1 (G2) − 8n2m2(m1M1 (G2) + 2n2M1(G1)).

Proof

M̄3 (G1 [G2]) =
∑

uv /∈E(G1[G2])

∣∣dG1[G2]) (u1, u2) − dG1[G2]) (v1, v2)
∣∣

=
∑

uv /∈E(G1[G2])

∣∣n2dG1 (u1) + dG2 (u2) − n2dG1 (v1) − dG2 (v2)
∣∣

≤
∑

uv /∈E(G1[G2])

n2
∣∣dG1 (u1) − dG1 (v1)

∣∣

+
∑

uv /∈E(G1[G2])

∣∣dG2 (u2) − dG2 (v2)
∣∣ = 2 (n1n2 − 1)

×
(
m1n

2
2 + n1m2

)
− 8m1m2n2 − n1M1 (G2) − n32M1 (G1) ,

The second proof follows from the expression HM (G1 [G2]) = n42HM (G1) +
n1HM (G2) + 2m1n2M1 (G2) + 8n2m2 (m1M1 (G2) + 2n2M1 (G1)) from Theorem
3 of [18]. ��

As an application we present formulas for the third and hyper Zagreb coindices of
Pn [k2] and Cn [k2] .

123



www.manaraa.com

Third and hyper-Zagreb coindices of graph operations 325

Corollary 3.16 (1) M3 (Pn[K2]) ≤ 4
(
5n2 − 19n + 18

)
,

(2) HM (Pn [K2]) = 200n2 − 912n + 1032,
(3) M3 (Cn[K2]) ≤ 20n (n − 3) ,
(4) HM (Cn[K2]) = 8n (25n − 82) .
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